It has been far too long since I’ve posted in this blog. Since my last post on my first-ever Lake Michigan waterspout intercept–and an amazing intercept it was, at that–waterspout season has come and gone, and Hurricane Sandy has wreaked damage of historical proportions on New York City and the New Jersey coastline. But, caught up in editing projects, I haven’t had much energy for writing my own stuff.
I have had a couple things up my sleeve, though, both musical and meteorological. This interview is one of them, and I think you will find it worth the wait. It features Wade Szilagyi, founder and director of the International Centre for Waterspout Research (ICWR) and developer of the Waterspout Nomogram and the Szilagyi Waterspout Index (SWI). Wade is not only at the cutting edge of waterspout research and forecasting, but he drives and defines much of it. I’m pleased and honored to have him as my guest.
Born in 1963 in Toronto, Ontario, Wade moved to Whitby in 1973, where he currently resides. He graduated in 1987 from the University of Toronto with a degree in atmospheric physics and was hired by the Canadian federal government as a meteorologist that same year. He worked as an operational meteorologist until 2001, when he moved into the National Service Operations Division as a national coordinator for program development and standards. Wade has published several articles and research papers on the topic of waterspouts and forecasting. He has also appeared on various media outlets discussing the topic of waterspouts, including interviews on The Weather Channel and Interlochen Public Radio and a writeup in Newsnet5.com.
Wade has two sons who are now in university. One is taking criminology and the other, mechanical engineering. Their father says, wryly, “I couldn’t convince them to go into weather!”
Wade likes to stay active. “I am very big on health and fitness,” he says. “I love to dance, bike, kayak, and power walk. I am a big believer in self-improvement and strive to be strong in mind, body, and soul.”
With that background on Wade the person, I now present to you Wade the waterspout researcher. I think you will find he has some fascinating things to say.
Question: Let’s start with the question that I’m sure is burning in everyone’s curiosity: How do you pronounce your last name? Give us the phonetic spelling.
Wade: Sa-la-gee
Q: Please tell us how you first became interested in meteorology.
W: It all started in grade eight science class. We were doing a unit on weather; however, the passion didn’t hit me until the end of the chapter. One of the chapter questions was to construct a weather observation table. My table consisted of weather parameters such as temperature, relative humidity, cloud cover, wind velocity, etc. I took weather readings and entered them in the table twice a day. I thought I would do this for a week; little did I know that it would last for five years!
Much came from those tables: graphs were produced, trends analyzed, and a climatology for my home town was initiated. This finally culminated with the entry of my project in the science fair in grade 13, for which I won second prize. I still remember teachers bringing their students past the displays. One teacher didn’t believe that I was dedicated enough to take weather readings twice a day every day for five years. He accused me of making the readings up. In my defense, I told him to talk to my teacher, who had known me for several years.
Q: You serve as director for the International Centre for Waterspout Research as well as with the Weather Office of Environment Canada. Please tell me a bit about your training and experience as a meteorologist.
W: The training as a meteorologist begins at university. There are different routes one can take in order to satisfy the requirements to become a federal government meteorologist. One must have a BSC degree in meteorology, atmospheric physics, or a combination of math and physics. I chose the atmospheric physics route. After graduating, I was hired by the federal government and took a mandatory year-long operational forecast training program. This is where one learns how to forecast the weather. After graduating, I was sent to the Toronto Weather Centre, where I remained for ten years. At this office I produced various forecast products such as aviation, public, marine, fire weather, and specialized products. Eleven years ago, I left the Weather Centre and went to the National Services Division, where I am a program manager for weather standards.
Q: One thing I immediately picked up on in talking with you is that you are utterly enamored with waterspouts! Clearly your knowledge of them has been fueled by genuine passion and fascination. When and how did waterspouts first capture your interest, and what has been your path as a foremost waterspout research scientist? Who has been influential along the way?
W: As with many discoveries in life, my interest in waterspouts came about by accident. Originally, I was investigating the phenomenon known as “arctic sea smoke.” This forms over open bodies of water at very cold air temperatures. Arctic sea smoke was a problem at one of our airports on Georgian Bay; it would frequently reduce the visibility near the runway.
I started looking into how to forecast arctic sea smoke. On days when arctic sea smoke occurred, I went down to Lake Ontario to gather data. By accident, I noticed several transient swirls forming in the sea smoke. These are called steam devils, and I quickly became interested in them. On one occasion I saw a huge steam devil. I called it a “winter waterspout.” It was at this point that my fascination with waterspouts began.
At the time, little was done in the way of waterspout forecasting. Weather centers would issue a Special Marine Warning (U.S.) or a Waterspout Advisory (Canada) only after a waterspout was sighted. On one midnight shift, I said to myself, “We are forecasters. We should be able to predict waterspouts.”
I began gathering meteorological data during waterspout events in order to develop a forecast technique. A couple of years later, the first version of the technique, the Szilagyi Waterspout Nomogram, was developed and used at the Weather Center in Toronto.
Over the years, as more data was gathered, the Nomogram was improved. Recently, I developed the Szilagyi Waterspout Index (SWI), which is based on the Nomogram. From the SWI, and with the help of my colleague, my dream of developing the world’s first operational waterspout forecast model was achieved during the summer of 2012. Waterspouts can now be predicted with confidence up to two days in advance!
The Nomogram and SWI are now used at weather centers around the Great Lakes and on both coasts of North America, and they are now being investigated in other parts of the world, especially Europe. During this period, I have written several articles and research papers and have given media interviews. I also formed the International Centre for Waterspout Research (ICWR) in 2008, which is a non-governmental organization comprised of research scientists, meteorologists, storm chasers, etc. from around the world who are interested in the field of waterspouts.
Regarding who has been influential along my waterspout research path, I would have to say Dr. Joseph Golden. Dr. Golden is considered the “father of waterspouts.” He spent most of his career studying waterspouts and how they form. I was honored to have met Dr. Golden at the Great Lakes Operational Meteorology Workshop in Traverse City, Michigan, back in the 1990s.
Frank Kieltyka, a meteorologist from the Cleveland Weather Office who conducted waterspout studies over Lake Erie, was also influential in the early days. Internationally, Dr. Alexander Keul, from the Vienna University of Technology, and Michalis Sioutas, from Meteorological Application Centre in Greece, inspired me to work on joint international research projects and to establish the International Centre for Waterspout Research.
Q: I first came across your name as the author of a brief 2009 paper titled A Waterspout Forecasting Technique. In it, you described four types of waterspouts—thunderstorm-related, upper low, land breeze, and winter—and offered three significant parameters for forecasting them. Presumably, thunderstorm-related waterspouts evolve through processes familiar to storm chasers. But the remaining three are less familiar. Would you briefly describe the conditions that produce them and what distinguishes them from each other? Do any of them have a land-based equivalent?
W: As a correction to the article, “thunderstorm-related” should be “severe weather.” Severe-weather-type waterspouts, like tornadoes over land, are associated with mesocyclones.
The other three types of waterspouts (upper low, land breeze, and winter) are categorized as fair-weather-type waterspouts. These form in a different manner than the severe-weather-type waterspouts. There are no mesocyclones associated with fair-weather-type waterspouts. In all three cases, circulation with fair-weather-type waterspouts starts at the surface of the water. As air rapidly moves upwards under the cloud, the circulation gets stretched upwards and forms a waterspout. What distinguishes the three fair-weather types is the weather pattern in which they form. Upper low waterspouts form under unstable conditions associated with what meteorologists call upper lows—large areas of cool, rotating air. Upper low waterspouts form any time of the day or night.
Land breeze waterspouts form along convergent lines called land breezes. Land breezes form overnight under light wind conditions as warm air rises over the water and is replaced by cooler air from the surrounding land. This cooler air converges along a line over the water, and it is along this line of converging air that rotation is initiated and waterspouts form. Land breezes last until early afternoon, at which time the waterspouts dissipate.
Winter waterspouts form when it is very cold and windy. This results in extremely unstable conditions over the water. However, winter waterspouts are rarely observed because lake effect snow obscures their presence.
The land-based equivalent of the three fair-weather-type waterspouts is a phenomenon known as the landspout. Landspouts form in a similar way as fair-weather-type waterspouts.
Q: You encapsulated the three chief parameters for forecasting waterspouts in the Szilagyi Waterspout Nomogram, which was the precursor to the Szilagyi Waterspout Index (SWI) and the ensuing colorized forecast maps for Great Lakes waterspouts. Those appear to be the first practical tools ever devised for forecasting spouts. Starting with the Nomogram, would you tell us how you developed them and exactly what they are? What improvements do you anticipate for the forecast maps?
W: Back in 1994, I started investigating what meteorological parameters correlated well during waterspout events. I wanted these parameters to be easy to calculate for forecasters. Three parameters satisfied these conditions of good correlation and easy use.* I then plotted these points and noticed that they formed a concentrated cluster on the graph. I enclosed the cluster with two lines. These lines are called the waterspout threshold lines. If a calculated point falls within them, waterspouts are likely. Outside the lines, waterspouts are not likely. This is what constitutes the Nomogram.
The Szilagyi Waterspout Index (SWI) is derived directly from the Nomogram. The purpose is to produce an index that can be used in computer algorithms to produce forecast maps of waterspout potential. The SWI ranges from -10 to +10. Waterspouts are likely for SWI ≥ 0. The new Experimental Waterspout Forecast System (EWFS) produces forecast values of SWI.
Improvements to the forecast maps produced by the EWFS are planned. These improvements include a higher model resolution, simplification of the display, and most importantly, the incorporation of surface convergence. Surface convergence is essential for waterspout formation.
Q: I understand that waterspout formation has five stages. Could you describe them? In a phone conversation, you mentioned to me that the presence of even a small funnel cloud means that a waterspout is already in progress, with circulation between the water surface and cloud base fully established. Most storm chasers are careful to distinguish between a funnel cloud and a tornado; they define a tornado by either the condensation funnel making full contact with the ground or else with visible rotation at ground level, typically verified by whirling dust or debris. How do you view this approach based on your experience with waterspouts?
W: Dr. Joseph Golden was the first to identify the five stages of a waterspout. These are:
1. Dark spot. A prominent circular, light-colored disk appears on the surface of the water, surrounded by a larger dark area of indeterminate shape and with diffused edges.
2. Spiral pattern. A pattern of light and dark-colored surface bands spiraling out from the dark spot which develops on the water surface.
3.Spray ring. A dense swirling ring of water spray appears around the dark spot with what appears to be an eye similar to that seen in hurricanes.
4. Mature vortex. The waterspout, now visible from water surface to the overhead cloud, achieves maximum organization and intensity. Its funnel often appears hollow, with a surrounding shell of turbulent condensate. The spray vortex can rise to a height of several hundred feet or more and often creates a visible wake and an associated wave train as it moves.
5. Decay. The funnel and spray vortex begin to dissipate as the inflow of warm air into the vortex weakens.
Regarding reporting either a waterspout or funnel cloud, the same procedure should be followed as with observations over the land. Evidence of a spray ring, or a fully condensed funnel reaching the surface of the water, should be visible before reporting it as a waterspout. If there is no spray ring visible because it is too far away to be viewed, and if the condensation funnel appears incomplete, then it should be called a funnel cloud.
Q: This year has been a record-breaker for waterspouts, bolstered by such landmark events as the September 21-24 Great Lakes outbreak. What has the ICWR gained, and what do you expect it to get, from this year? In your organization’s research overall, have you made any discoveries that have surprised you?
W: This year’s record-breaking waterspout numbers have resulted in tremendous media attention for the ICWR (e.g. The Weather Channel). This media attention has resulted in more individuals submitting waterspout reports on our website, which we display.These reports are also used to update and improve the nomogram.
A discovery that has surprised us at the ICWR is that the nomogram can be applied in other areas of the world, in particular over European waters. These observations were confirmed in a recent research paper.
Q: Speaking of the ICWR, how long has it been in existence? What led to its formation, and what is the story of its growth? What are some of its significant achievement? What are some things you’d like to see it accomplish within, say, the next five years, and who besides yourself are the players?
W: Founded in 2008 by me and two European colleagues, the ICWR is an independent non-governmental organization comprised of individuals from around the world who are interested in the field of waterspouts from a research, operational, and safety perspective. Originally conceived as a forum for researchers and meteorologists, the ICWR has now expanded interest and contribution from storm chasers, the media, marine and aviation communities, and from private individuals. The goals of the ICWR are as follows:
- • Foster the advancement of waterspout research and forecasting.
• Provide an international forum for the exchange of information among researchers and meteorologists.
• Facilitate the reporting of waterspouts from around the world from storm chasers and other interested individuals.
• Promote, educate, and communicate to academic institutions, the media, marine and aviation communities, and private individuals.
Some of the achievements of the ICWR have been to jointly produce waterspout research papers. Another achievement has been the increase in public awareness of waterspouts around the world. Features on the ICWR web site called the “Live Waterspout Watch”, as well as the ICWR Facebook page have helped facilitate this public awareness.
Some projects that are currently being undertaken, and which I hope will be completed in the next five years, are the Global Waterspout Forecast System (GWFS), Global Waterspout Database (GWD), and Global Waterspout Watch Network (GWWN). The GWFS will produce waterspout potential maps for the entire globe. The GWD is a database containing waterspout events from around the world. The GWWN is a global network of waterspout spotters.
The ICWR is comprised of a director (me), as well as an executive committee. The executive committee has two representatives: Dr. Alexander Keul, from Salzburg University; and Michalis Siatous, meteorologist with the Greek Weather Service. The ICWR is also represented by a growing number of storm chasers, meteorologists, and research scientists.
Q: Are there any ways that storm chasers, weather observers, and other interested parties can participate in or otherwise assist the work of ICWR?
W: Yes. Storm chasers and weather observers can contact the ICWR and become part of the GWWN. Researchers and meteorologists can collaborate with the ICWR to produce joint research papers or develop forecast models.
Q: How many waterspout incidents have you personally witnessed? Are there any that stand out as particularly memorable for you?
W:I have seen waterspouts on five separate occasions. The most memorable one was the first time I saw them. I rented a cottage for a few days on the north shore of Lake Erie. The weather was warm and the hope of seeing any waterspouts diminished with each passing day. On the last day of the vacation, I stopped thinking about waterspouts. That morning the weather was cool. I went out onto the beach with my glass of orange juice and was looking around the sand. I looked up over the water, and to my amazement I saw a family of three waterspouts in a row! My jaw and the glass dropped. I ran into the cottage yelling, “Waterspouts!” My wife told me that I was like a kid in a candy store. I grabbed my video camera, and for the next fifty minutes I filmed several waterspouts forming and dissipating.
Q: When you’re not researching waterspouts, what do you like to do? Got any hobbies that keep you occupied when the spouts aren’t spinning?
W: Hey, waterspout research is my hobby! My other hobbies are archeology and treasure hunting, which I have been doing for the last twenty-six years. I have found several artifacts that have added to the knowledge of the history of my town. These artifacts go on display to the public at various events. I am also planning on creating a virtual museum. I should point out that one of my greatest dreams is treasure hunting on the beach while looking up and seeing a waterspout!
_______________________
* The three parameters are as follows: (1) The difference between water temperature and 850 mb temperature; (2) the depth of convective clouds; and (3) the 850 mb wind speed, which must be less than 40 knots. For further information, Szilagyi refers readers to his article on waterspout forecasting.